T. Mark Dunster

Ph.D. Applied
Mathematics,
University of Bristol, U.K.
Professor, Department of Mathematics & Statistics
College of Sciences
San Diego State University
5500 Campanile Drive
San Diego, CA 92182-7720
USA
Research Areas: Asymptotic analysis, special functions,
ordinary differential equations, scattering theory.
Publications
- W. G
.C. Boyd and
T. M. Dunster,
Uniform
asymptotic
solutions of a
class of
second-order
linear
differential
equations
having a
turning point
and a regular
singularity,
with an
application to
Legendre
functions.
SIAM J. Math.
Anal. 17 (2)
(1986),
422-450, https://doi.org/10.1137/0517033
- T. M.
Dunster,
Uniform
asymptotic
expansions for
prolate
spheroidal
functions with
large
parameters.
SIAM J. Math.
Anal. 17 (6)
(1986),
1495-1524,
https://doi.org/10.1137/0517108
- T. M.
Dunster,
Uniform
asymptotic
expansions for
Whittaker's
confluent
hypergeometric
functions.
SIAM J. Math.
Anal. 20 (3)
(1989),
744-760, https://doi.org/10.1137/0520052
- T. M.
Dunster,
Bessel
functions of
purely
imaginary
order, with an
application to
second-order
linear
differential
equations
having a large
parameter.
SIAM J. Math.
Anal. 21 (4)
(1990),
995-1018, https://doi.org/10.1137/0521055
- T. M.
Dunster,
Uniform
asymptotic
solutions of
second-order
linear
differential
equations
having a
double pole
with complex
exponent and a
coalescing
turning point.
SIAM J. Math.
Anal. 21 (6)
(1990),
1594-1618, https://doi.org/10.1137/0521087
- T. M.
Dunster and D.
A. Lutz,
Convergent
factorial
series
expansions for
Bessel
functions.
SIAM J. Math.
Anal. 22 (4)
(1991),
1156-1172, https://doi.org/10.1137/0522075
- T. M.
Dunster,
Conical
functions with
one or both
parameters
large. Proc.
Roy. Soc.
Edinburgh Sec.
A. 119 (3-4)
(1991),
311-327, https://doi.org/10.1017/S0308210500014864
- T. M.
Dunster,
Uniform
asymptotic
expansions for
oblate
spheroidal
functions I:
positive
separation
parameter
.
Proc. Roy.
Soc. Edinburgh
Sec. A. 121
(3-4) (1992),
303-320, https://doi.org/10.1017/S0308210500027931
- T. M.
Dunster, D. A.
Lutz and R.
Schäfke,
Convergent
Liouville-Green
expansions for
second-order
linear
differential
equations,
with an
application to
Bessel
functions.
Proc. Roy.
Soc. London,
Ser. A 440
(1993), 37-54,
https://doi.org/10.1098/rspa.1993.0003
- T. M.
Dunster,
Uniform
asymptotic
approximations
for Mathieu
functions.
Methods Appl.
Anal. 1 (2)
(1994),
143-168, https://doi.org/10.4310/MAA.1994.v1.n2.a2
- T. M.
Dunster,
Uniform
asymptotic
solutions of
second-order
linear
differential
equations
having a
simple pole
and a
coalescing
turning point
in the complex
plane. SIAM J.
Math.
Anal. 25
(2) (1994),
322-353, https://doi.org/10.1137/S0036141092229537
- T. M.
Dunster,
Uniform
asymptotic
expansions for
oblate
spheroidal
functions II:
negative
separation
parameter
.
Proc. Roy.
Soc. Edinburgh
Sec. A. 125
(4) (1995),
719-737, https://doi.org/10.1017/S0308210500030316
- T. M.
Dunster,
Asymptotics of
the
generalised
exponential
integral, and
error bounds
in the uniform
asymptotic
smoothing of
its Stokes'
discontinuities.
Proc. Roy.
Soc. London
Ser. A
452 (1996),
1351-1367, https://doi.org/10.1098/rspa.1996.0069
- T. M.
Dunster,
Asymptotic
solutions of
second-order
linear
differential
equations
having almost
coalescent
turning
points, with
an application
to the
incomplete
Gamma
function.
Proc. Roy.
Soc. London
Ser. A
452 (1996),
1331-1349, https://doi.org/10.1098/rspa.1996.0068
- T. M.
Dunster, Error
bounds for
exponentially
improved
asymptotic
solutions of
ordinary
differential
equations
having
irregular
singularities
of rank one.
Methods Appl.
Anal. 3 (1)
(1996),
109-134, https://doi.org/10.4310/MAA.1996.v3.n1.a7
- T. M.
Dunster, Error
analysis in a
uniform
asymptotic
expansion for
the
generalised
exponential
integral. J.
Comp. Appl.
Math. 80 (1)
(1997),
127-161, https://doi.org/10.1016/S0377-0427(97)00026-5
- T. M.
Dunster, R. B.
Paris and S.
Cang, On the
high-order
coefficients
in the uniform
asymptotic
expansion for
the incomplete
Gamma
function.
Methods Appl.
Anal. 5 (3)
(1998),
223-247, https://doi.org/10.4310/MAA.1998.v5.n3.a1
- T. M.
Dunster,
Asymptotics of
the
eigenvalues of
a rotating
harmonic
oscillator.
J. Comp. Appl.
Math. 93 (1)
(1998), 45-73,
https://doi.org/10.1016/S0377-0427(98)00070-3
- T. M.
Dunster,
Uniform
asymptotic
approximations
for the Jacobi
and
ultraspherical
polynomials,
and related
functions.
Methods Appl.
Anal. 6 (3)
(1999),
281-316, https://doi.org/10.4310/MAA.1999.v6.n3.a2
- T. M.
Dunster,
Uniform
asymptotic
expansions for
the reverse
generalised
Bessel
polynomials,
and related
functions.
SIAM J. Math.
Anal. 32 (5)
(2001),
987-1013, https://doi.org/10.1137/S0036141099359068
- T. M.
Dunster,
Convergent
expansions for
linear
ordinary
differential
equations
having a
simple turning
point, with an
application to
Bessel
functions.
Stud. Appl.
Math. 107 (3)
(2001),
293-323, https://doi.org/10.1111/1467-9590.00188
- T. M.
Dunster,
Uniform
asymptotic
expansions for
Charlier
polynomials.
J. Approx.
Theory 112 (1)
(2001),
93-133, https://doi.org/10.1006/jath.2001.3595
- T. M.
Dunster,
Uniform
asymptotic
expansions for
associated
Legendre
functions of
large order.
Proc. Roy.
Soc. Edinburgh
Sec. A. 133
(4) (2003),
807-827, https://doi.org/10.1017/S0308210500002687
- T. M.
Dunster,
Uniform
asymptotic
approximations
for the
Whittaker
functions
and
.
Anal. Appl. 1
(2) (2003),
199-212, https://doi.org/10.1142/S0219530503000119
- T. M.
Dunster,
Convergent
expansions for
solutions of
linear
ordinary
differential
equations
having a
simple pole,
with an
application to
associated
Legendre
functions.
Stud. Appl.
Math. 113 (3)
(2004),
245-270, https://doi.org/10.1111/j.0022-2526.2004.01525.x
- T. M.
Dunster,
Uniform
asymptotic
approximations
for incomplete
Riemann zeta
functions. J.
Comput. Appl.
Math. 190
(1-2) (2006),
339-353, https://doi.org/10.1016/j.cam.2004.11.051
- T. M.
Dunster, M.
Yedlin and K.
Lam, Resonance
and the late
coefficients
in the
scattered
field of a
dielectric
circular
cylinder.
Anal. Appl. 4
(4) (2006),
311-333, https://doi.org/10.1142/S0219530506000796
- T. M.
Dunster, On
the
logarithmic
derivative of
Nicholson’s
integral.
Anal. Appl. 7
(1) (2009),
73-86, https://doi.org/10.1142/S0219530509001281
- T. M.
Dunster, Quasi
nonuniqueness
in the
scattered
field of a
dielectric
circular
cylinder.
Anal. Appl. 8
(1) (2010),
63-83, https://doi.org/10.1142/S0219530510001515
- T. M.
Dunster,
Simplified
asymptotic
solutions of
differential
equations
having double
turning
points, with
an application
to Legendre
functions.
Stud. Appl.
Math. 127 (3)
(2011),
250-283, https://doi.org/10.1111/j.1467-9590.2011.00519.x
- T. M.
Dunster,
Conical
functions of
purely
imaginary
order and
argument.
Proc. Roy.
Soc. Edinburgh
Sec. A. 143
(5) (2013),
929-955, https://doi.org/10.1017/S0308210511001582
- T. M.
Dunster,
Electromagnetic
wave
scattering by
two parallel
infinite
dielectric
cylinders.
Stud. Appl.
Math. 131 (3)
(2013),
302-316, https://doi.org/10.1111/sapm.12014
- T. M.
Dunster,
Olver’s error
bound methods
applied to
linear
ordinary
differential
equations
having a
simple turning
point. Anal.
Appl. 12 (4)
(2014),
385-402, https://doi.org/10.1142/S0219530514500298
- T. M.
Dunster, A.
Gil, J. Segura
and N. M.
Temme,
Computation of
a numerically
satisfactory
pair of
solutions of
the
differential
equation for
conical
functions of
non-negative
integer
orders. Numer.
Algorithms 68
(2015),
497-509, https://doi.org/10.1007/s11075-014-9857-5
- T. M.
Dunster, On
the order
derivatives of
Bessel
functions.
Constr.
Approx. 46 (1)
(2017), 47-68,
https://doi.org/10.1007/s00365-016-9355-1
- T. M.
Dunster,
Asymptotics of
prolate
spheroidal
wave
functions. J.
Classical
Anal. 11 (1)
(2017), 1-21,
https://doi.org/10.7153/jca-11-01
- T. M.
Dunster, A.
Gil and J.
Segura,
Computation of
asymptotic
expansions of
turning point
problems via
Cauchy's
integral
formula:
Bessel
functions.
Constr.
Approx. 46 (3)
(2017),
645-675, https://doi.org/10.1007/s00365-017-9372-8
- T. M.
Dunster, A.
Gil, J. Segura
and N. M.
Temme,
Conical: an
extended
module for
computing a
numerically
satisfactory
pair of
solutions of
the
differential
equation for
conical
functions.
Comput. Phys.
Commun. 217
(2017),
193-197, https://doi.org/10.1016/j.cpc.2017.04.007
- T. M.
Dunster, A.
Gil and J.
Segura,
Uniform
asymptotic
expansions for
Laguerre
polynomials
and related
confluent
hypergeometric
functions.
Adv. Comput.
Math. 44 (5)
(2018),
1441-1474, https://doi.org/10.1007/s10444-018-9589-5
- H. S.
Cohl, T. H.
Dang and T. M.
Dunster,
Fundamental
solutions and
Gegenbauer
expansions of
Helmholtz
operators on
Riemannian
spaces of
constant
curvature.
SIGMA 14
(2018), 136,
45 pages. https://doi.org/10.3842/SIGMA.2018.136
- T. M.
Dunster,
Liouville-Green
expansions of
exponential
form, with an
application to
modified
Bessel
functions.
Proc.
Roy.
Soc.
Edinburgh
Sec. A.
150 (3)
(2020),
1289-1311, https://doi.org/10.1017/prm.2018.117
- T. M.
Dunster,
Asymptotic
solutions of
inhomogeneous
differential
equations
having a
turning point.
Stud. Appl.
Math. 145 (3)
(2020),
500-536, https://doi.org/10.1111/sapm.12326
- T. M.
Dunster, A.
Gil and J.
Segura,
Simplified
error bounds
for turning
point
expansions.
Anal. Appl. 19
(4) (2021),
647-678, https://doi.org/10.1142/S0219530520500104
- T. M.
Dunster,
Uniform
asymptotic
expansions for
solutions of
the parabolic
cylinder and
Weber
equations. J.
Classical
Anal. 17 (1)
(2021),
69-107, https://doi.org/10.7153/jca-2021-17-06
- T. M.
Dunster, A.
Gil and J.
Segura, Sharp
error bounds
for turning
point
expansions. J.
Classical
Anal. 18
(1) (2021),
49-81, https://doi.org/10.7153/jca-2021-18-05
- T. M.
Dunster,
Nield-Kuznetsov
functions and
Laplace
transforms of
parabolic
cylinder
functions.
SIAM J. Math.
Anal. 53 (5),
(2021)
5915-5947, https://doi.org/10.1137/21M1401590
- T. M. Dunster,
Uniform
asymptotic
expansions for
the Whittaker
functions
and
with
large. Proc.
A. 477 (2021),
no. 2252,
Paper No.
20210360, 18
pp, https://doi.org/10.1098/rspa.2021.0360
- T. M.